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Fluid flow induced by a rotating disk of finite radius
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Abstract. The boundary-layer equations outside a rotating disk of radius a have been solved. It is shown that it is
unnecessary to take special precautions for the sudden change in boundary conditions at the edge of the disk except
if one is interested in the flow at distances which are smaller than about 10-3a from the edge. The behaviour of the
flow at large distances from the disk is investigated analytically with results which are confirmed by the numerical
computations.

1. Introduction

The problem of solving the Navier-Stokes equations for a rotating disk of infinite radius has
first been considered by von Karman [1]. Later, more accurate results have been obtained by
Cochran [2], but since only the solution of a set of ordinary differential equations is involved,
it is in the computer era no longer any problem to approximate the exact solution with
arbitrary accuracy.

In the present paper the flow outside a circular rotating disk of finite radius a and zero
thickness is considered on the basis of the boundary-layer equations. Since these equations
are parabolic and the radial velocity component u is everywhere positive if the ambient fluid
is at rest, there is to order Re° no feedback from the region r > a toward the region r < a.
The sudden change in the boundary conditions at z = 0 for r = a from u = 0, v = 0 to
duldz = 0, dvldz = 0 (v = tangential velocity, z = axial coordinate) makes that there arises a
double deck in the boundary layer of length O(Re- 3/7) at both sides of the edge r = a of the
disk, see Smith [3]. For r > a there is an inner and an outer Goldstein solution which differ
numerically from the solutions behind the trailing edge of a flat plate [4] due to the different
value of duldz for z = 0 at the plate. In our case there are also Goldstein solutions for the
tangential velocity v.

Special attention is given to the asymptotic behaviour of the velocity components u, v and
w for r-- c. The components u and w decrease like r - ' and v like r- 2, provided z/r is kept
constant. The boundary-layer thickness increases proportionally to r. Numerical solutions of
the boundary-layer equations have been calculated for r > a, which for r x are in complete
agreement with the analytical results.

2. The boundary layer along the disk

For an axially-symmetric system the dimensionless equations of motion are (see e.g. [5]):

du du v2 dp r d2U + d u d2u]
-r z + r dr dr \r/ dz J
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dv dv uv 2 v d
u-+ w- +- =Re 2 +-

dr dz r fdr dr

dw dw dp 1 fd2 w
u-+ w -=--+ Re 2 +

dr dz dz r

yr) dz iV

1 8dw d2W

r r dz 2 JI

while the equation of continuity is

1 d 8w
- d (r)+ = O,
r dr dz

with w the axial velocity, p the pressure and p the fluid density. Lengths have been made
dimensionless with a, velocities with fla and the pressure with pf2 a2. The Reynolds number
Re is fa 2/v, with v the kinematical viscosity coefficient. Boundary conditions are

z=0: u =0,

z--*o: -- 0,

v=r, w=0,

v->O, p--o.

Introduction of a stream function 4i by

1 8¢i 1 d8
U-=- W =-----

r dz ' r dr

satisfies the continuity equation.
An exact solution can be obtained by putting

2 = ½ Re-/ 2 r2H(Rel 2 z),

U = 2rH'(Re/ 2z), v =

p = Re-'P(Rel1 2z),
(2.1)

rG(Rel/2 z), w = -Re-1/2H(Rel/2z).

After substitution in the equations and in the boundary conditions, we obtain

tH"' + HH - H' 2 + G2 = 0

G" + HG'- H'G =0,

Re-12(P ', + H" + HH') = 0O,

z=0: H(0)=0,

z-> o: H'(o) = 0,

H'(0) =0, G(O) = 1,

G(o) = 0, P() = 0.

The numerical solution of boundary-value problem (2.2) can be obtained by a shooting
procedure. It turns out that

½H"(O) =0.510232619 and G'(0) = -0.615922014. (2.3)

As shown by Zandbergen and Dijkstra [6] this non-linear problem has other solutions too,
however, with doubtful physical significance. These will not be considered in this paper.

It is evident from the formulae (2.1) that dpldr, d2 uldr2 , d(ulr)ldr, d2 vldr2 , d(vlr)ldr,

(2.2)
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d2 wldr2 and r-'dwldr all are identically 0. Furthermore, dpldz = O(Re-1/2 ). This implies
that to O(Re ° ) the solution of (2.2) is also the solution of the boundary-layer equations

du du v2 - d2U d0 dv uv d2v
u - + w---= Re u + w -+ -= Re -

dr dz r dr dz r dz 2

We transform all variables to O(Re °) by introducing

qi = Re 1/2, w=Re w, z = z,+ = Re-1/2+, W = Re- 1 /2 Z = Re-1/2Z

which leads to

du du v2 d2U dv dv uv d2v
u - + w d -= 2 u - + w + - = -

dr dz Z' dr dz dZi
1~~~~~~~ 0~~ ~~~~~~~~ ~(2.4)

1 doU 1 0o
U-- , W=---.

r dz' r dr

These boundary-layer equations are parabolic with u everywhere positive. Hence, its
O(Re °) solution is not influenced by the region r > 1. This result holds only for zero angular
velocity of the ambient fluid since otherwise there will be regions with negative u, see [6].

3. The inner Goldstein solution

At the edge of the disk there is a sudden change in the boundary conditions for z = 0:

du
u = 0 is changed into =0 for r > 1,

dv
v = 1 is changed into =0 for r > 1 .

For r 1 we have duldiz= H"(O) and dvld = G'(O) of which the numerical values are
given by (2.3). Hence, near r = 1+ and z =0 there must be a small region where du/ld
increases from 0 to H"(O) and dvldz decreases from 0 to the negative value of G'(O). This
region will be determined by r = 1 + x with x small, while we assume its extension in
i-direction to be O(x') with 3 > O0. The stream function i(x, £z) will be O(xa), which means
u = O(x'-), w = O(x-l). Finally, v is assumed to be 1 + O(x').

The various terms in the boundary-layer equations (2.4) then have the following orders of
magnitude:

du du v2 d2U+ O(= 2a-2(-1) -= O(x° ) = O(X-3) 
dr dz r d2'

dv dv uv 22
u - + W = O(X

a-
+Y

- 1
), - = O(x

- 2
P) .dr Ordz"2

Furthermore, duldz= O(x -2 3 ) and dvldi= O(x' - O) must both be of order O(x°), due to
their finite value. This leads to a = 2/3 and y = /. Since in each equation there must always
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be two terms of largest magnitude, both equations yield

2/3-1=-, 3 P = 3, a = and y= .

In first approximation, the terms v2/r and uv/r are clearly unimportant.
Suitable new coordinates in the region of the inner Goldstein solution are

e=x3= ( r - 1)1 and ,/=zx=/
= . (3.1)

The equations of motion in the new coordinates are

du + 3du 33 2 d2U
u~ -f + (352W - u) Or+ 1 3 = 35 2 ,de drq 7 + 3 d1+2

dv 2 dv 3~~~~~3 2 ~(3.2)
tgv dv 353 dv

u - + (3 2 _ u) 8 +
3 uv= 3 2 de d-q 1 + 3 dn 2

Expansions for -- 0 then become

= 2f0(?q) + 3fi(_1) + ( 4),

1 2
u d- = ef() + e2f (i) + O(3),r dz

(3.3)
v = 1 + g0() 

+ O(2),

W=- d =- _ {f_ (71)-nf) If;()} - {fi() - ½fl()} + O(f) .

The functions fo, fl and go are determined by differential equations obtained by substitu-
tion of the expansions (3.3) into equations (3.2). This yields

3f,' + 2f o fo - ft2 = O,

3g' + 2fg - fogo = 0, (3.4)

3f7 + 2fo f - 3fjtf + 3flfi + 3 = .

The pertinent boundary conditions are

fo(O) = 0, f(0)= 0, f(o) = =H"(0),

g;(O) = 0, go(-) = G'(O), (3.5)

f(O) = , f'l(O) = .

The third boundary condition for f, at /--- cx must be obtained from matching with the outer
Goldstein solution, see equation (4.4).

Asymptotic expansions for 1e--- follow from (3.4):

fo() - H"(0)(r, + A) 2 , go(*r) - G'(0)(,7 + A), (3.6)

where the constant A has been determined numerically as A = 1.116283424.
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4. The outer Goldstein solution

This is the solution in the region where > O(x½). In this region, and z are the relevant
coordinates. The equations of motion become

du 2 V du 362 2 d2u
u d +3 Z -+ ,2W + 3 = 3 2 0 2 ,

(4.1)362 2'
d +32 dv 32 d 2v 2 .

Expansions for -- 0 are

, = 2H() + 6J() + 0(s2),

v = G(z) + K(z) + O(2),

Substitution of (4.2) into (4.1) leads to

H'J' - H"J = 0,

H'K - 2G'J = O ,

J(z) = CH'(z),

K(z) = 2CG'().

The constant C follows from matching with the inner Goldstein solution. Expansion of tb for
z-> 0 yields

2 = { 2 H"(0) + 6 3 H"(0) + O(Z4 )} + C({zH"(0) + ½2 H"'(0) + O(Z3 )} + O(s2).

Written in inner variables , ,/ this reads

= 27 2 H"(0) + l2 37 3H"(o) + C 2 'rqH"(0) + 2C3 7 2H' (O) + 0(2),

where ---> 0, --> c, but = X/- - 0.
This last expression must agree with the asymptotic expansion (3.6) of the inner solution,

i.e. ii- H"(0) 2 ( + A) 2 + 3f(,), l--->. The terms with 62,q2 are in agreement. The
terms with 2 lead to C = A, while the most important term of O( 3) gives

a nd- , f,() ~ 3He"(0) ,

and hence

f(n)- H"'(0).

It follows from (2.2) that H"'(0) = -2{G(0)}2 = -2. So, the third boundary condition for
fi is

(4.4)fl'(x) = -1.

u = H'() + J'(i) + 0(52),

w = _ - -2J(zi) + 
(4.2)

(4.3)
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Finally, the outer solution for --> 0 is

= 1H(Z) + 1A6H'() + O(52), u = 1H'(Z) + A6H"( ) + O(2),

(4.5)
v = G(z) + AeG'(z) + 0(6 2 ), w = - -A-2H'(1) + 0(-1).

There are two remarks to be made:
1. The terms denoted by the order symbols are not given by higher derivatives of the

functions H and G, but are more complicated.
2. For ---> 0 the velocity w becomes infinitely large as ( -2). This means that for very

small values of e the boundary-layer equations are not valid. A double-deck structure
of length O(Re - 31 7) appears [3].

5. The asymptotic behaviour of the boundary layer for r---> oo

For r --> the velocities will diminish while the boundary layer will become thicker. Hence

u r f'(rl) , v - rg(7q) , where 7 = z/ro (5.1)

and a < 0, y < 0, 3 > 0. The boundary conditions are

f() = 0, f'(oo) = 0, f"(O)= O, g'(0)= 0, g(oo) =0. (5.2)

In the equation of continuity we have

du =
= {af'(r) - P'f"(*)}r' , U 

-1 =f'()rt , d f(dr r dz

Thus,

8£ = {-(a + 1)f '(i) + /3,f"()}r

Since

dw _0 9 dw
~ = r d

we obtain

= {-(a + 1)f'(*7) +Pf"(*l)}r +
d.

and, after integration,

w = {-(a + /3 + 1)f(/) + P/f'(*)}r"+ -' + h(r), (5.3)

where h(r) = 0 since for *7 = 0, f(*/) = 0 and 0 = 0.
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We now substitute the assumptions (5.1) into the equations of motion (2.4). Then

{af'2 - (a + P1 + 1)ff }r2 -1l _ g2 r2y-1 = f' r -2

(5.4)
{(y + l)f'g - (a + + 1)fg'}r"+ - ' = g"rY- 2

Since in the boundary layer the viscous term g"r - 2
, must play a role, this term must be of

the same order as the other terms. Hence

a + 2, = 1. (5.5)

In the first equation (5.4) this makes r2 -' and r - 23 of equal order, which implies that the
remaining term containing r2y -1 cannot be of larger order. Thus

y < a. (5.6)

We shall now investigate the two cases y < a and y = a. We begin with y < a. Then, for

r-> o, the first equation (5.4) simplifies to

af'2 - (a + + P 1)ff" = f".

Eliminating a with the aid of (5.5), we obtain

(1 - 2/3)f'2 - (2 - 3)ff" = f'

which can also be written as

(3 - 3/3)f'2 -_ (2 - p3)(f'2 + if") = f.

This equation can be integrated as

(3- 3/3) f' d-(2-- /)ff ' =f"

Since all terms except the first one vanish due to the boundary conditions, the first term
must also be zero. This means 13 = 1 and from (5.5) it follows that a = -1. The differential
equation then becomes

f"' + ff" + f,2 = 0

and, integrated,

f"+ff' =C,

where C -= 0 due to f(O) = 0 and f"(0) = 0.
A second integration yields

f'+ f 2 = C,
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where

C, = {f(o)} 2 = f'(0). (5.7)

The last equation can be solved with the result that

f(r) = C tanh 2,C , where C = f(oo) . (5.8)

After substitution of the values for a and /3, the second equation (5.4) becomes

(Y + 1)f'g - fg' = g", g'(0) = 0, g(o) = 0, (5.9)

which is an eigenvalue problem.
The independent variable a, will be replaced by a new variable

t = tanh 21C = C-f( 71) .

Then

d d d2 d - d
d/ C f d and = C-2'2 d + C- d- and 2 = f c - if" 

drl dt _q Ptdt

Substitution into (5.9) yields

f 2 = C2( + l)g.

Using the solution of f, given by (5.8), we obtain the result

(1 - t2) - 2(y + 1)g = 0 t E [0, 1] . (5.10)
dt2

It follows from [7, §22.6, Eq. (22.6.1)] that equation (5.10) has only a bounded solution if

-2(y+ 1)=n(n-1), n=0,1,....

From n = 2 onward the bounded solutions are Jacobian polynomials, orthogonal on the
interval [-1, 1] with weight function (1 - t2 )- 1. All these polynomials contain a factor 1- t2

and hence satisfy the boundary condition g = 0 at t = 1 (77 = oo). Only those corresponding to
even values of n satisfy also the boundary conditions g' = 0 at t = 0 (7 = 0). For n = 2, we
obtain y = -2 and the solution of (5.10) is g(t) = C2(1 - t2 ) or

g(/) = C2 sech 2½7C . (5.11)

The smaller values of y corresponding to n = 4, 6, . . may correspond to further terms in the
asymptotic expansion of v.

Finally, we have to show that the case y = a does not lead to a solution. The equations
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(5.4) then are

af' 2 - (a + Am + 1)ff" - g2 =f,,, , (a + 1)f'g - (a + 3 + 1)fg' = g".

By elimination of a with the aid of (5.5), the first equation can be written in the form

(3 - 3)f' 2 _ (2- 3)(f'2 + ff,) _ g2 =f,,,.

Integrating this equation between -7 = 0 and = x and taking into account the boundary
conditions, the result is

(3 -383) f' 2 d - g2 d- = 0,

which requires P < 1.
The same procedure applied to the second equation (5.12) leads to

(4 - 3/3)f'g - (2 - 3)(f'g + fg') = g"

and hence

(4- 3/3)0 f'g dq = 0.

Since f' and g are functions which do not change sign, the only possibility to satisfy the last
equation is /3 = 4/3 and this is in contradiction to the previously found requirement /3 < 1.

This completes the investigation of the asymptotic behaviour with the conclusion that for

r --> oo, u - rlf'(r) , v - r- 2g(_/) 7 = /r ,

f(/) = C tanh '1,C, f'(r) = Cl sech2 lC, g(/7) = C2 sech 2½71C .

These results, as well as the relation (5.7), are fully confirmed by the numerical
computations described in Section 6. The constants appear to be

C1 = 1 C
2 = f'(0) = 0.31, C2 = g(0) = 0.29.

6. The numerical computations

We have to solve the set of equations (2.4) with pertinent boundary conditions. After
elimination of w, this set can be written as

1 d(u, qi) v2 d2 u

r d(r, ) r dZ2 

1 (v, ) uv d2v
r (r, ) r 

r d(r,) r -
2

In order to obtain an accurate solution near the singular point r = 1, z = 0, it is necessary
to distinguish three regions of integration (see Fig. 1). Region I is the region of the inner
Goldstein solution and region II that of the outer Goldstein solution. The coordinates in

(5.12)

C = f(o) = 0.79,

1 anF
r dz

(6.1)
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()

I I

0

III

II

~~~I

0

Fig. 1. The three regions of integration.

region I are (5, ,7), where

= X1/3 = (r - 1)11 3 , qr = z/ . (6.2)

The boundary between regions I and II is determined by = /q where 71q is a value
beyond which the inner solution is described with sufficient accuracy by its asymptotic
behavior (exponentially decreasing deviation). We also introduce a value Cm beyond which
no distinction needs to be made between the inner and the outer solution. The regions then
are defined as follows

region I: 0< ( m 0 1 < q ,

region II: 0< , 1qZ< <Zq = m71q

region III: 0< m , Zq Z Z and ( 
< 0 .

The equations are solved by a difference method. Since the boundary-layer variables show
the quickest change near = 0, we take more points near the plane z = 0 by introducing in
region III

sinh /3 mx
Zmax sinhZ . 3 with Zmax = 25, = 5, 0 < 1.

sinh '

In -direction we will take p equidistant points defined by /,r = jh with j = 0, 1,..., p and
h = 1 p. The boundary = iq between the regions II and III is given by j = q. The points in
region I are determined by i, ( 1 i < m, 0 _ 1 < q). The H, are defined below and

71l = zl/m In region II the points are given by ,, Yk where 1 i m and i - k - m (Fig. 2).
These coordinates are equal to

Yk = Ym e(k-m)a = m e(m)a with a = ln(Z/zIq_).

This has the advantage that also at the boundaries from region I to II and from region II to

'77
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7
;0

Fig. 2. Definition of coordinates ,, y,.

III, we can use steps of equal size. Indeed

Ym-l e _ = 1 _ sinh q-

Ym zq sinh 3/lq

and, therefore, Ym-, still fits into the p/-division of region III. This means that we can take
the boundary between regions II and III as part of region III and we retain equidistant steps
in .

In region II we introduce vk = kh, again with h = 1 lip and we take v as continuous variable
with equidistant points k . Then

yk = yo e or y=y e

Since

qk-jah ]h q-1
evka/h Yk-l q-l q- sinh .'q-i

evkalah Yk q 
71

q sinh 63pq

which shows that the points (,, y,_-) and (,, y,) are characterized both by v,_-, vi and by
Aq-l ,/XLq. Therefore, the boundary between regions I and II will be taken as part of region II
and we retain equal steps in the v-variable.

We now transform equations (6.1) to the variables 5, of region I. The Jacobian is

d(u, tp) _ (u, ) (6, bt) _ d(u, ) adu (3 2)
d(r, Z) d(, ) d(r, z) d(6, -) dz

with

aZ= sinh 3,. in region I. (6.3)
=. sinh 

Y.

Y,

II
i

1Z

:7~

5L
"'1Z

2q

65

I
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The set of equations then becomes

dp =ruday

du _1 dI du d +3Le2 d2u (dA)2+ du d2 a + v2(64)
du r d di dz d 2 dz d d r'

dv 1 dq ddv d e {2 vd(vA, dv d _ uv}
u -+ r de 8 di +3t3 d-2 di A 2 '

In region II the set of equations is the same but with E/ replaced by v and z by y. In region III
we have the same set of equations as in region I, the only difference being the relation
between z and p/, which is

Z = 2max sinh in region III.

The boundary conditions at z = 0, where we have d.t Id2 z0, are

d U dv
z=: O, -=0, -=0,

do dA

= zmax: U =, = 0 .

For solving the equations, we use the Crank-Nicolson method combined with an iterative
Newton-Raphson procedure due to the non-linearities. As starting values at s = 0 the values
obtained in Section 2 are used. The inner and outer solutions from Sections 3 and 4 were
taken as initial values at = et for the Newton-Raphson procedure. Initial values at

= e2 . ., em were obtained from extrapolation in -direction.
The calculations have been performed with

,m = 0.1, m = 30, q = 10, p =50

and also with

,m =0.1 , m = 60, q = 20, p = 100,

in both cases until = 1. From m = 0.1 onwards As has been taken equal to 0.0125. Some
results obtained with the finer mesh are presented in Table 1.

Since the suspicion existed that the influence of the singularity at the edge of the disk was
not too important, calculations have also been performed with the equations of region III
used in the whole quarter plane. Here also p = 100 and Ad = 0.0125. Results are given in
Table 2. For extremely small values of and z2 an irregularity occurs when the steps are
taken increasingly smaller. But as soon as becomes larger, the values are again reliable.
The larger the , the smaller the difference between the calculations with and without
regions I and II. This is due to the smoothing character of solutions of parabolic equations.
From a comparision of Tables 1 and 2 it is seen that unless one wants the solution for
extremely small values of (and these can be obtained analytically as inner and outer
solutions), it is superfluous to introduce regions I and II.
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Table 1. Results for u, v and w obtained with regions I and II

U

z ? = 0.0 0.1 0.2 0.4 0.6 0.8 1.0

25.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15.1621 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007

9.1943 0.0003 0.0002 0.0002 0.0002 0.0003 0.0022 0.0103
5.5734 0.0066 0.0060 0.0054 0.0048 0.0070 0.0215 0.0448
3.3751 0.0431 0.0394 0.0360 0.0321 0.0433 0.0747 0.0929
2.0384 0.1160 0.1081 0.1005 0.0930 0.1143 0.1355 0.1272
1.2219 0.1727 0.1668 0.1604 0.1597 0.1796 0.1740 0.1441
0.7174 0.1752 0.1799 0.1824 0.2044 0.2163 0.1917 0.1510
0.3959 0.1355 0.1541 0.1757 0.2264 0.2324 0.1988 0.1536
0.1756 0.0752 0.1135 0.1656 0.2351 0.2384 0.2014 0.1546
0.0000 0.0000 0.0917 0.1620 0.2374 0.2399 0.2020 0.1548

v

z s = 0.0 0.1 0.2 0.4 0.6 0.8 1.0

25.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15.1621 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004
9.1943 0.0004 0.0003 0.0003 0.0002 0.0003 0.0017 0.0055
5.5734 0.0087 0.0079 0.0071 0.0063 0.0080 0.0170 0.0238
3.3751 0.0607 0.0550 0.0499 0.0440 0.0506 0.0591 0.0495
2.0384 0.1967 0.1785 0.1621 0.1430 0.1366 0.1075 0.0678
1.2219 0.3964 0.3610 0.3288 0.2826 0.2183 0.1381 0.0767
0.7174 0.5984 0.5479 0.5012 0.3988 0.2655 0.1523 0.0804
0.3959 0.7644 0.7065 0.6397 0.4626 0.2863 0.1580 0.0818
0.1756 0.8927 0.8229 0.7195 0.4892 0.2942 0.1601 0.0823
0.0000 1.0000 0.8733 0.7436 0.4961 0.2962 0.1606 0.0824

z ~ 5 = 0.0 0.1 0.2 0.4 0.6 0.8 1.0

25.0000 -oo -0.8833 -0.8825 -0.8845 -0.8608 -0.6390' -0.4405
15.1621 - -0.8833 -0.8826 -0.8845 -0.8608 -0.6383 -0.4331
9.1943 -o -0.8927 -0.8844 -0.8844 -0.8576 -0.6164 -0.3681
5.5734 - o -1.1061 -0.9249 -0.8822 -0.8092 -0.4909 -0.2179
3.3751 -o -2.3347 -1.1538 -0.8610 -0.6198 -0.2682 -0.0855
2.0384 -o0 -4.8282 -1.6155 -0.7764 -0.3491 -0.1043 -0.0260
1.2219 -o -6.8902 -1.9881 -0.6001 -0.1633 -0.0360 -0.0075
0.7174 -co -7.2249 -2.0111 -0.3949 -0.0764 -0.0134 -0.0024
0.3959 -o -6.1454 -1.6044 -0.2272 -0.0371 -0.0057 -0.0009
0.1756 -0o -3.9859 -0.8528 -0.1022 -0.0156 -0.0022 -0.0003
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 2. Results for u, v and v obtained without separate regions I and II

U

z = 0.0 0.1 0.2 0.4 0.6 0.8 1.0

25.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15.1621 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007
9.1943 0.0003 0.0002 0.0002 0.0002 0.0003 0.0022 0.0103
5.5734 0.0066 0.0060 0.0054 0.0048 0.0070 0.0215 0.0448
3.3751 0.0431 0.0393 0.0359 0.0321 0.0433 0.0747 0.0929
2.0384 0.1160 0.1079 0.1005 0.0930 0.1144 0.1355 0.1272
1.2219 0.1727 0.1667 0.1603 0.1597 0.1795 0.1739 0.1440
0.7174 0.1752 0.1799 0.1824 0.2044 0.2163 0.1917 0.1510
0.3959 0.1355 0.1553 0.1759 0.2264 0.2323 0.1988 0.1536
0.1756 0.0752 0.1141 0.1659 0.2351 0.2383 0.2013 0.1545
0.0000 0.0000 0.0922 0.1623 0.2373 0.2399 0.2020 0.1548

z s = 0.0 0.1 0.2 0.4 0.6 0.8 1.0

25.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15.1621 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004

9.1943 0.0004 0.0003 0.0003 0.0002 0.0004 0.0017 0.0055
5.5734 0.0087 0.0079 0.0071 0.0063 0.0081 0.0170 0.0238
3.3751 0.0607 0.0549 0.0499 0.0440 0.0506 0.0591 0.0494
2.0384 0.1967 0.1782 0.1620 0.1430 0.1365 0.1074 0.0677
1.2219 0.3964 0.3604 0.3286 0.2825 0.2182 0.1381 0.0767
0.7174 0.5984 0.5470 0.5008 0.3985 0.2654 0.1523 0.0804
0.3959 0.7644 0.7028 0.6387 0.4622 0.2861 0.1579 0.0818
0.1756 0.8927 0.8214 0.7183 0.4888 0.2940 0.1600 0.0823
0.0000 1.0000 0.8724 0.7423 0.4956 0.2960 0.1605 0.0824

w

z ? = 0.0 0.1 0.2 0.4 0.6 0.8 1.0

25.0000 -° -0.8833 -0.8826 -0.8845 -0.8606 -0.6389 -0.4404
15.1621 - ~ -0.8833 -0.8826 -0.8845 -0.8606 -0.6382 -0.4330
9.1943 -o -0.8926 -0.8844 -0.8844 -0.8574 -0.6162 -0.3680
5.5734 -x -1.1043 -0.9245 -0.8822 -0.8089 -0.4907 -0.2178
3.3751 -oo -2.3225 -1.1511 -0.8607 -0.6194 -0.2681 -0.0855
2.0384 -oo -4.7956 -1.6080 -0.7758 -0.3488 -0.1042 -0.0260
1.2219 - -6.8424 -1.9764 -0.5992 -0.1631 -0.0359 -0.0075
0.7174 -o -7.1775 -1.9977 -0.3942 -0.0764 -0.0134 -0.0024
0.3959 -oo -6.1097 -1.5937 -0.2268 -0.0371 -0.0057 -0.0009
0.1756 -xo -3.9912 -0.8476 -0.1020 -0.0156 -0.0022 -0.0003
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



Fluid flow induced by a rotating disk 69

Table 3. Results for u, v and v for large values of r

U

z/r r= 1 2 4 8 16 32 64

25.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15.1621 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9.1943 0.0003 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000
5.5734 0.0066 0.0044 0.0033 0.0018 0.0009 0.0005 0.0002
3.3751 0.0431 0.0284 0.0178 0.0093 0.0047 0.0024 0.0012
2.0384 0.1160 0.0753 0.0420 0.0215 0.0108 0.0054 0.0027
1.2219 0.1727 0.1172 0.0615 0.0310 0.0155 0.0078 0.0039
0.7174 0.1752 0.1402 0.0716 0.0359 0.0180 0.0090 0.0045
0.3959 0.1355 0.1501 0.0758 0.0380 0.0190 0.0095 0.0047
0.1756 0.0752 0.1538 0.0774 0.0387 0.0194 0.0097 0.0048
0.0000 0.0000 0.1548 0.0778 0.0389 0.0195 0.0097 0.0049

v

Z/r r= 1 2 4 8 16 32 64

25.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15.1621 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9.1943 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
5.5734 0.0087 0.0023 0.0008 0.0002 0.0001 0.0000 0.0000
3.3751 0.0607 0.0151 0.0043 0.0011 0.0003 0.0001 0.0000
2.0384 0.1967 0.0401 0.0101 0.0025 0.0006 0.0002 0.0000
1.2219 0.3964 0.0624 0.0149 0.0037 0.0009 0.0002 0.0001
0.7174 0.5984 0.0747 0.0173 0.0042 0.0011 0.0003 0.0001
0.3959 0.7644 0.0799 0.0183 0.0045 0.0011 0.0003 0.0001
0.1756 0.8927 0.0819 0.0187 0.0046 0.0011 0.0003 0.0001
0.0000 1.0000 0.0824 0.0188 0.0046 0.0012 0.0003 0.0001

w

z/r r= 1 2 4 8 16 32 64

25.0000 -oo -0.4414 -0.2028 -0.0993 -0.0494 -0.0247 -0.0124
15.1621 -0o -0.4414 -0.2028 -0.0993 -0.0494 -0.0247 -0.0124
9.1943 -co -0.4319 -0.2009 -0.0982 -0.0489 -0.0244 -0.0122
5.5734 -I -0.4046 -0.1790 -0.0867 -0.0431 -0.0215 -0.0108
3.3751 -oo -0.2804 -0.1151 -0.0547 -0.0271 -0.0135 -0.0068
2.0384 -x -0.1267 -0.0476 -0.0222 -0.0109 -0.0054 -0.0027
1.2219 -oo -0.0406 -0.0139 -0.0064 -0.0031 -0.0016 -0.0008
0.7174 -oc -0.0110 -0.0033 -0.0015 -0.0007 -0.0004 -0.0002
0.3959 -oo -0.0029 -0.0006 -0.0003 -0.0001 -0.0001 -0.0000
0.1756 -= -0.0008 -0.0001 -0.0000 -0.0000 -0.0000 -0.0000
0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
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Fig. 3. The radial velocity u for z = 0.

Using this conclusion, a final calculation has been made up to arbitrarily large values of 6.
Taking into account the linearly increasing thickness of the boundary layer (Section 5), the
relation between and p. has now been taken as

sinh El.
Z = Zmar againh with Zmax = 25 and = 5.Z = Zna.r sinh3 '

Fig. 4. The tangential velocity v for £ = 0.
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Beyond r = 2, 5 = 1, a new variable in r-direction has been used, viz. s = 1- 2/r, which
brings r -- > to s = 1. Then for r ->o, u diminishes like 1 - s and v like (1 - s)2. Results for
u, v and w are presented in Table 3. All conclusions derived analytically in Section 5 are
confirmed by the computations.

Finally, Figs. 3 and 4 show the functions u(e, 0) and v(, 0) outside the disk.
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